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ABSTRACT

Consideration is given to a system of reaction diffusion equations which
have qualitative significance for several applications including nerve
conduction and distributed chemical/biochemical systems. These equations are
of the FitzHugh-Nagumo type and contain three parameters. For certain ranges
of the parameters the system exhibits two stable singular points. A singular
perturbation construction is given to illustrate that there may exist both
pulse type and transition type traveling waves. A complete, rigorous,
description of which of these waves exist for a given set of parameters and
how the velocities of the waves vary with the parameters is given for the case
when the system has a piecewise linear nonlinearity. Numerical results of
solutions to these equations are also presented. These calculations
illustrate how waves are generated from initial data, how they interact during
collisions, and how they are influenced by local disturbances and boundary
conditions.- In one example, a rightward moving "front" (rest-to-excited
transition) slows down, stops, turns around, and develops into a leftward
moving "back" (excited-to-rest transition) when it encounters appropriate
spatially localized, transient perturbations in the dependent variables. 1In
this case, the medium ultimately returns to the rest state. For the same
parameter values we have sought, but have not found, analogous local
disturbances sufficient to reflect a propagating "back". These observations
are consistent with the notion that the rest state is in some sense dominant
for a certain parameter range. It is conjectured that local disturbances or
certain boundary conditions cannot cause the reflection of a nondominant to a
dominant transition wave. Partial evidence for this conjecture is presented
by means of an analytic argument.
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3 SIGNIFICANCE AND EXPLANATION

The mathematical equations studied here were originally introduced as a

model for nerve conduction. They have also been considered as a model for

chemical/biochemical reaction systems as well as electrical transmission
lines. It has been demonstrated that electrical impulses in the nerve axon
travel with constant shape and velocity. Mathematically this corresponds to a
traveling wave solution. For a given mathematical model there may exist
different types of traveling wave solutions each traveling with a different

velocity. These include solitary pulses, multiple pulses, and traveling

fronts.
In this report we describe which waves exist for a given set of
parameters of the equations and how the velocities of the waves vary as
Y functions of the parameters. Numerical results of solutions to these
equations are presented to illustrate how the waves are generated from initial

stimuli, how they interact during collisions, and how they are influenced by

local disturbances. Accession For
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PROPAGATION PHENOMENA IN A BISTABLE REACTION DIFFUSION SYSTEM
John Rinzel and David Terman

1. Introduction.

The FitzHugh-Nagumo (FHN) equations
- + -
vt vxx f(v) w
(1.1)
wt=€(V‘YW) ’ €Y >0
has been studied extensively as a qualitative model for nerve conduction [7, 12, 18]. 1In

this context the dynamics, (1.1) with Vex = 0 , are usually taken to be excitable with

nullclines as in Figure 1A. The rest state (0,0) is stable and globally attracting but

an adequate initial displacement from rest leads to a large excursion before the eventual
return to rest. Qualitatively similar dynamics are found for other excitable systems and
study of the FHN equation has provided insight into excitability and propagation phenomena
in several applications, e.g. see [18].

Here, we extend consideration to parameter ranges, e.g. Y large enough, for which
the v - w dynamics are bistable (Figure 1B). In this case there are two stable singular
points: the rest state on the left branch of f(v) and the excited state (Ev'Ew) on the
right branch. Although this parameter range precludes direct applicability to most nerve
or muscle membrane types there are examples of conditions which induce bistability (8,
11]. Dynamics similar to Figure 18 have also been considered theoretically in models for
neuronal interactions at the population level [19]. For chemical/biochemical reaction
systems [14], as well as electronic transmission lines [13], two variable systems with
bistable behavior have been investigated. Sometimes in these sivdies, although not

necessarily, the w-variable has much slower dynamics than v in which case 0 < g << 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS80-17158 and the National Institutes of Health.
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In (1.1), ai operates only on v . This spatial coupling is physically natural for
the electronic transmission line as well as the nerve fiber. For the neuronal population
models, this corresponds to short-range coupling of one cell type (say, the inhibitory
cells) relative to the length scale of coupiing for the other cell type (the excitatory

cells). For chemical systems, one might neglect w,

XX if w , the species without the

cubic~like instantaneous dynamics, diffuses much more siowly than the v-species. In {[14],
for an enzyme-mediated reaction scheme, the assumption of very rapid v-dynamics is used to
scale the model equations and obtain a system qualitatively like (1.1) and Figure 1B with
only v as diffusible.

In this paper we will investigate various propagation phenomena for (1.1). An example

of Ortoleva (described by FPife [6)) offers preliminary motivation. Suppose that at t = 0,
the medium iz in the excited state for x > 0 and in the rest state for x < 0. Subse-
quently, a transition wave will develop which then propagates away from x = 0 so that the

entire medium is ultimately brought to one of the two stable states, whichever is dominant

(a degscriptive term also used in (6, 14)). Hence (1.1) should have a traveling wave
solution which corresponds to a steadily propagating transition either from the rest state
to the excited state, or vice versa, (Fiqure 2 A,B) depending on which state dominates. As
it turns out, for a certain parameter range, both types of transition waves exist, simulta-
reovsly with different speeds; w~e refer to these as traveling front and back solutions.
Intriquingly, for a subset of the front-back parameter range, traveling pulse solutions are
also found. A pulse represents an excursion either from the rest state back to itself or
from the excited state back to itself (Figqure 2 C,D). In addition, there may be solutions
for steadily propagating trains of pulses although we will not treat trains here.

In Section 2 we will outline the singular perturbation construction [2, 3, 9] of the
various traveling waves for 0 < ¢ << 1 . This will develop our intuition for the parameter
ranges in which the waves exist. Two special cases of (1.1) are treated explicitly: CUB,
when f(v) = v(v-a)(1-v) and PWL, whea f(v) = -v + H(v-a) where H(+) is a Heaviside

step function; here, 0 < a <E§. Next, in Section 3, we obtain analytically the front,

e tmriimn

back, and pulse solutions for PWL in a large parameter range which extends beyond the
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region 0 < £ << 1, Rigorous proofs for existence of these waves are given. We also
calculate wave speeds as functions of the parameters. In addition to stable waves, we find
unstable ones. A global picture (Figure 6) is provided for ¢,y-parameter regimes in
which the various waves exist.

Finally, in Section 4, we present numerical results of solutions to (1.1), PWL, for
given initial and boundary conditions. These calculations illustrate how waves are
generated from initial data, how they interact during collisions, and how they are

influenced by local disturbances. In one example, a rightward moving front (rest-to~-

excited transition) slows down, stops, turns around, and develops into a leftward moving
back (excited-to-rest-transition) when it encounters appropriate spatially localized,
transient perturbations in v and w . In this case, the medium ultimately returns to the
rest state. For the same parameter values however, we have sought, but have not found,
analogous local disturbances sufficient to reflect a propagating back. These observations
are consigstent with the notion that the rest state is in some sense dominant for these
parameter values. We conjecture that, for a certain parameter range, local disturbances
may lead to reflection of a front but cannot cause reflection of a back, or more generally,
cannot cause reflection of a non-dominant to a dominant transition wave. We offer partial
support for this conjecture with an analytic argument. Similarly we expect for such
parameters that, when a boundary is held at rest, an approaching front will be reflected.
On the other hand, a back which propagates toward a boundary held at the excited state will
not reflect but rather may tend to a spatially nonuniform, t-independent, steady sgtate, a
solution which decays from the excited to the rest state with distance from the boundary.
For a chemical system, these phenomena would be observed, for example, in a capillary tube
which makes contact at the boundary with an infinite bath; where the bath maintains either
the rest or excited state.

The influence of boundaries and initjal disturbances on propagating transitions, and a
notion of dominance, have also been discussed by Fife [6]. In his (as well as others)
singular perturbation treatment, fronts are formed because of pseudo-steady state

bistability; that is, the well-studied reduced equation, (1.1) with ¢ =10 and w ,

-5~




constant, exhibits a transition wave. In such cases, only one typs of stable transition

wave exists and the definition of dominance follows naturally; the wave is always

monotone. For the full system (1.1), fronts and backs are generally not monotone but
rather have over or undershoots (Figure 2 A,B) or, in some cases, damped oscillatory
approach to the steady state (also, see [15)). The bistability and (not yet rigorously
defined) notion of dominance, which we discuss, is for the full system. Fronts, backs, and
pulses, were also considered by Collins and Ross (4], Keener [{9], and Nagumo, et al (13},

¥ Ortoleva and Ross [14) describe fronts and backs, but not pulses, for a bistable system.

! Klaasen and Troy [10] also treat some behavior of two-variable, bistable systems.
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2, The Singular Perturbation Construction of Traveling Waves.

In this section we describe ways of determining intuitively which traveling waves

exist for a given set of parameters and how their velocities change as functions of

parameters. Our description summarizes the results of {2],[(3], [9). 1If (vc(z),wc(z)),
z = x + ct, is a traveling wave solution of system (1.1), then setting u(z) = vé(z) .
it follows that Vc(z) = (vc(z), uc(z),wc(z)) satisfies the first order system of ordinary Q
differential equations

v! = qu

c c
(2.1) u' = cu_ ~ flv ) +w

c c c c

€
LI —— - -
Ye T ¢ (vc ch)

The number of equilibrium states of system (2.1) will be either one, two, or three

depending upon how the line vc = ch intersects the cubic-like curve v, = f(vc),

uc = 0. if the parameters a and ¢ are fixed, then when vy is sufficiently small the
origin will be the only equilibrium state of system (2.1). (Figure 1A). For <y large
there will be three equilibrium states. In this case we shall refer to the origin, (, as
the rest state and [ = (EV,O,EW) as the excited state (Figure 1B). We shall assume
c>0 so Ve corresponds to a leftward moving wave; note that the spatial profiles in

Figure 2 are for the rightward moving versions.

For a pulse we seek a value of ¢ such that system (2.1) has a solution which

satisfies lim v (z) = O. A front is a solution of (2.1) which satisfies 1im v (2) = 0
Izl'”° ¢ Z4=
and lim v (z) = E, while a back satisfies lim v (z) = £ and 1m Vv (z) = 0. 1In
Z oo Z »~ca Z++

the case of multiple equilibrium states it is also possible to have solutions which satisfy
lim v(z) = E. We shall refer to these as E-pulses.
[z]+»

We now sketch the singular perturbation construction of traveling waves. The solution

of system (2.1) is sought in separate regions, labelled "inner" and "outer", and then

joined appropriately. The inner region is defined to be those intervals over which rapid

changes in Ve take place, while the outer region involves variations on a much larger

z scale.

P s o



We first make the change of variables { = ¢z in (2.1) to obtain:

EV' =y
c c
d
" - - 'Y - —,
(2.2) eul = cu, f(vc) v (" at

1
' = - -
wC c ( vC WC )

Outer Region. Away from the locations of sharp transitions in v we obtain the lowest

c
order approximation by getting € = 0 in (2.2) to obtain:
u =90
-]
(2.3) w_ = f(v) (=%
* c c a& *

This implies that in the outer region the solution lies on the slow manifold curve:

v, = f(vc), uc 20 . We assume that the left branch of the cubic is given by v = g (w)
and the right branch is given by v = g‘(w).

Inner Region. Here we use the stretched variable z = %E and system (2.2) returns to

system (2.1). With € = 0 in (2.1) we obtain the following lowest order approximation

vl =g
c c
d
(2.4) w' =cu_ - f(v) +w_, (') ==—.
c c c c dz
w' =0
c

Therefore, in the inner region the solution must lie in a plane wc z constant. We shall
see that this constant determines the speed of the traveling wave.

Matched Composite Solutions. To lowest order in ¢ , the full solution is obtained by

matching the inner and outer solutions where their domains of definition overlap. We treat
each wave separately.

Fronts. We assume that the parameters are chosen so that the line Ve = ch intersects the
cubic as shown in Figure 1B. Since the independent variable £ does not appear explicitly
in Equation {(2.2) we may also assume that the inner region lies in a small neighborhood

about the origin, § =10 .
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The outer region describes the front's plateau. For Equation {2.3) we take Ve = g+(wc)
and the initial condition:
(2.5) w.(0) =0 .
This means that w, Ew ag z » =,

In order to match the inner and outer solutions we take the following boundary
conditions in Equation (2.4):

0.

i

(2.6) vc(-n) =0, vc(+w) =1, wc(z)
Equation (2.4) for cubic-like f(v) with boundary conditions (2.6) was studied by Aronson
and Weinberger [1). They proved the existence of a unique solution for a unique value of
¢ provided A > 0 , where A = f’f(v)dv. Hence, these equations determine, up to lowest
order in € , the speed of the fgont. In the case f{v) given by (PWL) one can give an
explicit formula for the speed, ¢, of solutions of Equation (2.4) with boundary condition
(2.6) as a function of the parameter a (see [16]). This formula is
c = (1~ 2a)lal{1 - a))~ Lﬁ.
Note that ¢ is a decreasing function of a and 1lim c = 0 . This is similarly true
a+t 1/2

for f(v) yiven by (CUB), in which case c¢ = V2 U&- a) (see [3]).

Note that the outer solution for a front lies on the right branch of the cubic while
the inner solution lies in the plane v, 2 0 . The complete phase space trajectory for a
lowest order front is shown in Figure 3.
Backs. In order for a back to exist the line vc = ch must intersect the cubic as shown

in Figqure 1B. Again we may assume that the inner region lies in a small neighborhood about

£ = 0. For the outer region, we take Ve = g-(wc) in Equation (2.3) and the initial
condition:

(2.7) wo(0) =E, .

In this case, wé < 0 and L 0 as z + » Then in Equation (2.4) we take the boundary
conditions

(2.8) vl = £, v (4w =g (E ), w (2) ZE_ .

The results of Aronson and Weinberger imply that there exists a unique solution of Equation




*seaze Tenba saey suorbsx papeys a3yl eyl os ussoyd ST On On=°m
o:oﬁmw:ucﬁmusouomm~=amuOhuoaowﬁmuuo:uu0u Ao>vu uuzw>u=u

3yl 30 youerq 3y°T oYl 03 youeaq IYLTX syl woxjy uorlTsuexy daeys ayl
* (paysep AAway) yovq v pue (prios Aaesay) juoxzy e jo suorjewrxoxdde
uoyieqinixad reinburs I19paO 3ISAMOT 103 S3TI0323(eal aoeds aseyd 3yl ¢ IINBIZ

(°A)}=

-10-

-——




{2.4) with boundary conditions (2.8) for a unique positive value of ¢ if and only if
q-(Ew)

B = [ (f(v) - Ew]dv >0 . From this we conclude that the back (to lower order) does
Ev

not exist if y 1s too large. This is because the assumption A > 0 implies that there

must exist a critical value of y , vy = Y, such that B < 0 for 1y > Y, ¢ Hence, the

“singular™ or lowest order back cannot exist for y > Y, - For f(v) given by (PWL) a

1+2a
1-2a

simple computation shows that Y, = . In this case one can also give an explicit
formula for the speed, c, of solutions of Equation (2.4) with boundary conditions (2.8)

as a function of y and a . This formula is
c = [2a - %E% {ta - ?%; Ma - ;%; VE.
We see that for the parameter a fixed the speed is a decreasing function of Yy , and
lim- ¢ = 0 . These properties also hold for f(v) given by (CUB).
Y*Yz
Note that the outer solution of a back lies on the left branch of the cubic-like curve
while the inner solution lies in the plane wc = Ew . The total phase space tajectory for
a back is shown in Fiqure 3.
Pulseg. A pulse can be thought of as a wave resembling a front followed by a back
traveling at the same speed. The trajectory in the phage space for the front part of the
pulse, or upstroke, begins at the origin and then makes a fast transition in the plane
v, = 0 to the right branch of we = f(vc) . It then slowly moves up the right branch of
the cubic-like curve until it reaches some point (vo,o,wo); thigs forms the plateau of the
pulse. The trajectory for the back part of the pulse, or downstroke, beginsg at the point
(VO,O,wO), makes a fast transition in the plane w = wo to the left branch of Wo = f(vc),
and then slowly returns to the origin along this left branch to form the recovery phase.
From Equation (2.4) it follows that the velocity of the back part of the pulse is

determined by the constant w, . We must choose Wy 8o that the velocities of the front

and kack parts of the pulse are equal. If f(v) is given by (CUB) or (PWL) then our

previous discussions imply that W, must be chosen so that

-




. g (wy)
[* ttvrav = [ £lv) - wildv .
0 g (wo)
+
g (w.)
Setting Yy = - it follows that a "singular" pulse does 1ot exist for vy > Yy -
0

This 18 becauge if y > 2 then Ew <wg e The pulse cannot exist because when the

trajectory for the front part of the pulse moves up the right branch of the cubic-like

curve it must stop at the excited state. It will be unable to reach the point
(q*(wo),o,wo) where it would make the transition to the left branch of the cubic-like
curve in order to form the back part of the pulse. If £(v) 1is given by (PWL) then a
simple computation shows that Yy = 722 °

We now summarize our results concerning the singular perturbation construction of
traveling waves. These results are stated for f(v) given by either (CUB) or (PWL),
however similar results hold for some general cubic-like nonlinearities.

For £(v) given by (CUB), choose Yo 8° that the line v = YoV intersects the local
maximum of the cubic as shown in Figure 4. Choose Y, and Y, so that, respectively,
the horizontally and vertically shaded regions in Figure 4 have equal areas. For f(v) .

a 2a 1+2a 1

3ca ! Y1 = —— , and 72 = . The singular perturbation N

given by (PWL) choose Yy = =2 T2a !
- o

h1 c¢onstruction then suggests that the following proposition is true. .

Proposition 2.1. For 0 < € << 1 a pulse exists for y € (0,71) ,» a front exists for

Py AP

ye (Yo,w) , and a back exists for vy € (Yo'Yz) .

Note that all three types of waves exist for vy € (70,71)- We saw in the singular

8
4 perturbation construction that the speed of the front is , to lowest order in ¢, a
B decreasing function of A = f1f(v)dv , while the speed of the back is a decreasing
- 0
g (E)
function of B = f [f(v) ~ Ew]dv . Note that if vy e (Yo,y1) then A > B . Hence, '
v

when all three types of waves exist, the back is faster than the front. For vy € (Y1'Y2)'

' the front is faster than the back, and in this parameter range an E-pulse exists.

-12-
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It is of course possible for other waves to exist which do not arise from the singular

perturbation construction. We ghall see in the next chapter that there may exist two

traveling waves of a particular type for a given set of parameters. The singular

perturbation construction gives the faster wave which one expects, from numerical evidence,

is stable. The slower wave is expected to be unstable.
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3. Solutions of the Piecewise Linear Model.

In this section we consider system (1.1) with €(v) defined by (PWL) and we give a
complete, rigorous description of which traveling waves exist €or a given set of parameters
and how their speeds vary with the paraweters. The construction we use here follows the
work of Rinzel and Xeller [16].

Pulses: We seek values of ¢ > 0 for which system (2.1) has a pulse shaped solution.
Because the independent variable, =z , does not appear in the equation explicitly we can
choose the origin, z = 0 , so that vc(o) = a ., We also assume that vc(z1) = a for

some z, > 0. Therefore, the solution we seek is a leftward moving version of the form
illustrated in Pigure 2C, to be distinguished from an E-pulse (Figure 2D). It follows that

along with Equation (1.1) the solution Vc = (vc,uc,wc)T must satisfy the conditions

+
+ z
0 wl 1
(3.1) v ] o= vil l=1
2,
(3.2) vc(o) = Vc(z1) = a ., z1 >0 .

This jump condition (3.1) results from the discontinuity of f£(v). To represent a pulse
the solution must also satisfy the condition vc(z) +0 as |z| + =,

We express the solution as

( ay2
aX,e H z <0
1
3 z
3.3 v. =4 7] BX euk +v 0<z<z
c kX k 1
k=1
3 (z-2,)
2 Ck xk euk ! ; z, ¢z
k=1

where Qs Gy, ay are the roots of the characteristic polynomial

2
(3.4} px) = x° + (‘s'rzg‘)xz - (eyeix - (EEE)

and where

-15-
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L
1+y 1 .
{3.5) V=1 0 and X = Y . k=1,2,3. '
1 -1
7:; e(cak + €y)

From (3.4) it follows that either ‘

61 >0, a3 < a2 <0

or

a1>0, 03-“2' Rac¢2<0. J
Because vc +0 as z + « we must take cy = 0 . It is this last condition which will

give us a relationship for the speed, ¢, in terms of the parameters a,e, and Y.

Using the continuity and jump conditions at z = 0 we obtain

§ -8 -6
1 2 3
(3.6) B-ﬂ"T,B - —_, B, = ——
1 P 2 3 p;
where
ey + ¢ .
{(3.7) 5k.._ak
e
o
]
. and pﬁ = p'(qk) .
: Matching at z = z, yields
§ a,z § z
c, = ae Y. —% “n - e01 1) .
1 P
1
\ Since cy = 0 , we obtain
! -,z M
3 (3.8) e v, (1 - a 31 ) 58 .
' 1

Using (3.8) and the fact that vc(z1) = a we are led to the following transcendental

f equation:

. -16- I
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(3.9) Fla,g,c,Y) £ 2~8 + —

Here we set 02 = 1%1 . Note that as a function of s Equation (3.9) does not depend on
the parameter a . Equation (3.8) gives a in terms of s .

The following theorem is proved in Appendix A by analyzing the roots of Equation

(3.9).

Theorem 3.1: Assume that the parameters € and Yy are given.

(1) There is a value of the parameter a for which a pulse exists if and only if
cyz < 1.
(i1) For a given value of ¢ at most one pulse can exist for a uniquely determined

valuye of a .

2
(iii) If ey < 1 then positive constants Cnin’ “max exist with Cmin < Cnax and such

that

(a) for each c e (cmin'c ) there is a unique value of a for which a

max

pulse exists,

(b) lim a =0,
cHc
min

(c) lim z, = 0 where 2z, was defined by vizg) = a, z, >0,

-\ c*cmin
t
':
; (d) 1im a=—1_,
k 2(1+y)
cic
i max
;
A (e) lim 21 = @ ,
; ctc
; max

. ¥4

(f) as cyz 41 both ¢

min and Cn + 0 .

ax
In the proof of this result we will also see that a pulse cannot exist if ¢ is
either too small or too large.
We have sclved Equation (3.9) numerically for fixed values of ¢, ¢ and vy . The

! corresponding value of a for each pulse is obtained from Equation (3.8). The solid

curves in Figqure 5 display pulse speed curves, c versus a , for different values of
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Y and € = 0.2. Bach curve has a well defined knee (av,cv) characterized by

?(av,t,cv.y) =0 and Pc(av,e,cv,y) = 0 . For each value of a , < ac< av , we

. S
2(1+y)

have two pulse solutions with speeds ct(a,e,y) and c‘(a,e,y) with Cg > Cq » Rinzel
and Keller (15) showed that in the case y = 0 the lower branch, Cg + corresponds to
unstable pulses while at the knee (av,cv) the pulse is neutrally stable. Feroe (5]
showed by numerically evaluating an analytic criterion that the upper branch, Ce 4
corresponds to stable pulses. For some values of ¢ and vy , other than those in Pigure
5 , the pulse speed curve has no upper branch or knee; in such a case, there is a unique

(unstable) pulse for a < and no pulse for larger values of a .

—1
2(1+y)

We observe that cmin(‘)' the minimum value of ¢ on each speed curve, occurs at

a=0. The maximum value of ¢ , ¢

‘max’ ©ON each speed curve, occurs at a = —X where

2(1+y)

the curve terminates (e.g., 0O for y = 1.0) on the corresponding speed curve (dashed) for

front solutions; here, z, = These results are predicted by Theorem 3.1, parts (iii,b

and 4).

Fronts: If in the construction of a solitary pulse, we take B, =0 (see Equation (3.3))

then we will have a front as shown in Figure 2A. The front can be written explicitly as

a,z
ax1e B z <0
v (z) =
€ 3 ukz _
- z . xke + VvV 0 <z
k=2 "k

where V and xk (k = 1,2,3) were defined in (3.5), Gk and Py were defined in
(3.7), and the a  are the roots of the characteristic polynomial p(x) defined in

(3.4). From Equation (3.6) we find that the condition By = 0 is equavalent to:

61
{(3.10) a=— .
Py
In order to have a front we must impose the further restriction that
2 X
(3.11) T-a <y or ac< Ty

to ingsure that there are multiple equilibrium states of system (2.1). By combining (3.10)

an (3.11) we see that a front with speed ¢ exists if and only if ¢ satisfies

-18~
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1 X
(3.12) p; < Ty
the corresponding value of a 1is given by (3.10). The following theorem shows that a
front exists for c¢ sufficiently small or large. It is proved in Appendix B .
Theorem 3.2: Assume that the parameters ¢ and y are fixed. Then there exists positive

constants Cqs Cy with <y < y such that if 0 < c < ¢y or ¢ > S, then (3.12) is

satisfied, and hence a front exists. Furthermore, 1lim a = —X and

c40 2(1+y)
<0 if eyz > 1
2a =0 if 512 = 1
ac
c=0 2
>0 if ey < 1.

The front for 0 < ¢ << 1 1is unstable (or linearly stable) according as aa/aclcso >0
{or < 0).
We have solved Equation (3.10) numerically for fixed values of the parameters

€, ¢, and Y . The short dashed curves in Figure 5 display various front speed curves,
¢ versus a , for different values of y and €= .2. For Yy = .25 and Yy =1, the
speed curves have two branches. One expects, as in the case of solitary pulses, that the
faster front corresponds to a stable wave while the slower front corresponds to an unstable
wave., Notice that for vy = .25 the speed curve is not defined for all values of the
speed c . This is because from Equation (3.11) it follows that a front cannot exist for

a > X - .2. These cutoffs for the speed curve y = .25 are illustrated by small

1+y

triangles.
As expected from Theorem 3.2 we find that 1lim a = ETT¥?7 on each speed curve. This

c+0
is indicated by the semicircles in Figure 5 which were placed at the points
X da =
(a,c) = (2(1+Y) R 0] Note that 2% | c=0 >0 for vy .25 and y = 1, while
%%|c=0 <0 for y=4 . This agrees with the last result stated in Theorem 3.2. The

proof of Theorem 3.2 also generalizes the results on limiting behavior for ¢ small, the

bifurcation of a slow front from a standing front, to “cubic-like™ f(v) .

~20-
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Figure 5 demonstrates that the speed curves for pulges lie 'inside' those of fronts.
That is, if the parameters ¢,Y, and c¢ are fixed then the value of a for which a pulse
exists is always less than the value of a for which the front exists. This can be proven
rigorously by considering Equations (3.8) and (3.10).

The long dashed curve in Figure 5 corresponds to the speed curve for the front when

€=0 . Itis given explicitly by ¢ = (1-2a){a(i-a)}” b& As the singular perturbation

construction, predicts for smail ¢ , the stable branch of the speed curves for the
fronts and the pulses lie very close to the speed curve for ¢ =0 .
Backs: It is not necessary to present the analytic construction of a back because there is
a one to one correspondence between fronts and backs under the change of variables

(v,w) + ( T%? -v, ~ w). Hence a back with parameters (a,e,c,y) is identified,

2
1+y
under the above change of variables, to a front with parameters (?%; - a,g,c,Y) .- The
speed curves, c¢ versus a with ¢ and vy held fixed, for the fronts and backs are

therefore symmetric with respect to the vertical line a The same corres-

R, SR
2(1+y)
pondence applies to pulses and E-pulses.

Fiqure 6 offers a schematic summary of our numerical and analytic results concerning
the existence of known pulse type and transition type traveling wave solutions of the
plecewise linear model. It shows the first quadrant of the Y - & plane divided into ten
regions. In each region there are four numbers which indicate, respectively, the
multiplicity of the different types of wave, pulses, froante, backs, and E-pulses, which
exist for those particular values of y and € .

In this diagram we agsume that the

parameter a is fixed with a € (0, bb) and we only consider waves with positive speed.

a 2a
The constants yo, Yy and yz are chosen as before. That is , YO = 1-a ' Yy = T-2a ’
and = 1+2a
Y2 % 32a

Figure 6 was constructed by analyzing various speed curves, c¢ versus a and c¢
versus Y , for different values of ¢ . We did not consider very large values of € .

It is, of course, possible that no waves exist if € 1is too large.
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Whenever just one front or back exists in a particular region it corresponds to a wave
lying on the upper branch of a speed curve. One, therefore, expects it to be stable.
Whenever just one pulse or [F-pulse exists in a particular region it corresponds to a wave
lying on the lower branch of a speed curve, and is, therefore, unstable.

In addition to the four types of waves already mentioned there also exist waves with
zero speed, i.e. stationary waves. Note that these waves do not depend on the parameter

€. For yeé€ (YO,Y1) there exists a stationary E-pulse. That is a stationary wave,

Vix) = (vi{x),u({x)w(x)), such that lim v(x) = E. For y> Y, there exists a
{x| o
stationary wave such that lim V(x) = (. This will be called a stationary pulse. For
Ix| =
two stationary transition waves exist. One satisfies lim v = £ and
X4—x
1'm v = 0 while the other satisfies limv = 0 and tim v = £. These represent
X to X 4= X+t®
limiting cases of the stationary pulse and stationary E-pulse with infinite pulse width.

Y= Y1:

3
3 Not only does Figure 6 illustrate how many traveling waves exist for a given set of

parameters, but also how the waves appear or disappear through bifurcations as the

parameters are varied. The dashed curves, for example, represent the existence of

i
]
;

neutrally stable waves out of which bifurcate the stable and unstable waves. These
correspond to the "knees" in the speed curves of Figure 5. The dashed curve separating
regions (IX) from (X) corresponds to neutrally stable fronts, while the dashed curve
separating regions (I) and (X) from regions (II) and (ITI) corresponds to neutrally stable
pulses. Both curves are drawn as monotonically increasing funtions of vy bccause the
numerical results indicate, for fixed a , that the minimum value of Yy for which the
"knees” of the speed curves in Figure 5 exist is an increasing function of ¢ . This makes 1
intuitive sense for the following reason. Suppose the recovery damping constant vy is
slightly increased from a critical value (for which the pulse is neutrally stable). This

diminishes the recovery or inhibitory effect of w so the system would exhibit a stable

pulse. Moreover, this pulse would persist even for a slightly greater recovery growth rate

¢ . Figure 6 also shows that for fixed € the neutrally stable pulse occurs at a larger f

value of y than the neutrally stable front. This follows from a preceding remark that

-23-
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the speed curves for pulses lie "inside" those of fronts. It means that a stable pulse '
occurs simultaneously with a stable front only if w is adequately damped.

The dashed curve separating regions (IV) and (V) corresponds to a neutrally stable
E~-pulse, while the dashed curve separating regions (V) and (VI) corresponds to a neutrally
stable back. Both curves are drawn as monotonically decreasing functions of Yy and both
approach y = Y2 as € + 0 . This limiting case has the speeds of the E-~-pulse and back
tending to zero and the width of the E-pulse tending to infinity.

The solid curve in Figure 6 is given explcitly as eyz = 1 . The transition from
region (VIII) into region (IX) corresponds to the bifurcation of a slow unstable E-pulse
from the stationary E-pulse. The transition from region (VII) into region (VI) corresponds
to the bifurcation of a slow unstable pulse from the stationary pulse. No pulses are shown
for eyz > 1 because of Theorem 3.1(i).

The other bifurcations occur at y = YO and y = y1 « As Y increases past YO

System (1.1) picks up the equilibrium state E. For ¢ sufficiently small we therefore
have the creation of the stable and unstable fronts, a stable back, and an unstable E-

piulse. It is, of course, at Y = Y that the discontinuity of £ (s reflected. For £

0
given by (CUB) the creation of the fronts, backs, and [ -pulses would not be so sudden.
Since System (1.1) would have another equilibrium state besides 0 and E there may be
other bounded solutions of System (1.1) which we have not considered.
For vy ¢ Y1 the speed of the stable back is greater than that of the stable front.

The opposite is true for y > Yy ¢ wWhen 1y = 71, the stable front and stable back have
the same speed. As y % Yy the width, Zqs of the stable pulse approaches +« . In some
sense, therefore, the stable pulse bifurcates from the front and back as Yy decreases past

Y = 71. Other bifurcations also occur at vy = Y1 « For example, as vy 4 Y1 both the
stationary E-pulse and the slow unstable front approach a stationary transition wave which
connects the rest state with the excited state.

Finally, when both a stable front and stable back exist, a stable pulse also exists

only if the back speed exceeds the front speed; this necegsary condition is satisfied by

-~
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parameter values in region (ITI). The condition is not sufficient however as evidenced by
region (X). The corresponding statements also hold for £-pulses in regions (IV) and (V)

respectively.
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4. Transient Interactions of Waves and local Disturbances.

We performed a number of numerical experiments to determine various properties of
traveling waves. In all of the results illustrated here we used the piecewise linear model,
t(v) = v - H(v - a), with parameter values a = .25, ¢ = .1, and y = .5; these para-
meter values correspond to region (IXI) in Figure 6. For numerical integration, we used a
Crank~Nicholson scheme throughout with Ax = ,1, At = .05, and a zero flux condition,

9v/3x = 0 , at both boundaries. For our choice of parameters the excited state is
(Ev'Ew’ = ( 1 B % } and a stable front, a faster stable back, and a stable pulse exist.

In describing the numerical experiments it will be convenient to refer to different
phases of the traveling waves. We shall refer to the sharp transition from the left branch
to the right branch of f(v) for the front or pulse as "the leading edge™, and the sharp
transition from the right branch to the left branch of £(v) for the back or pulse as the
"trajiling edge". These, of course, correspond to the inner regions in the singular
perturbation construction.

Formation of a Pulse from Square Initial Data. The formation of a pulse from specified

initial conditions is illustrated in Figure 7 . Spatial profiles v(x,t) versus x (Figure
7A) and wi{x,t) versus x (Figure 7B) are shown for discrete t: tp =5, 0<p<8.

For initial data we used square steps of unit height: v(x,0) = and w(x,0)

X(s5,138)

where is the characteristic step function of the interval fa,bl.

X(a,b)
Note the asymmetrical distribution of v(x,0), w(x,0) with respect to each other; the

= Xi2.5,7.5)

step in w(x,0) overhangs that in v(x,0). This helps ensure the formation of a pulse
rather than two fronts traveling in opposite directions.

We see that the leading edge in the front part of the pulse is clearly formed at
t =ty and proceeds to travel with constant velocity. The trajling edge in the back part
of the pulse also forms quickly but begins by traveling very slowly (t, < t < t,). The
trailing edge then accelerates until it is actually moving faster than the leading edge
(ty <t < tg)e The trailing edge then slows down and its speed approaches that of the
leading edge. Then the leading and trailing edges travel with the same speed

(t5 <t < ty) and a pulse is formed.
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In order to understand why the pulse is formed in this way recall that in the singular
perturbation congtruction of a traveling wave the recovery variable, w , is assumed to be
constant in the inner region. The speed of the leading edge is a decreasing function of
this constant while the speed of the trailing edge is an increasing function of this
constant. Ahead of the pulse w is always very close to zero, and hence the leading edge

propagates with constant speed. The trailing edge, however, does not see a constant value

of w , and therefore its speed varies.
In the region between the trailing and leading edges the spatial derivatives of v
are very small, and hence the solution will follow very closely space clamped dynamics.

That is, the solution (v,w) will evolve according to the ordinary differential equation:
v, = £(V) - w
w, = e(v = yw)

with initial conditions v(0) = 1 and w(0) = 0 . It follows that in the middle region

the solution (v,w) becomes very close to the excited state (Ev, E,)-

The velocity of the trailing edge initially increases until this edge sees a value

of w very close to w = Ew’ Because of our choice of parameters the tralling edge is now
traveling faster than the leading edge. After the trailing edge passes x = 35 its speed
decreases because then it advances into a region where w 1is decreasing. The pulse is
formed when the trailing edge slows to the same speed as the leading edge. Then, be-cause
both edges have the same speed, the trailing one always sees a constant value of w.

For a singular perturbation construction of how traveling waves are formed from

initial data see Xeener (9] .

Collisior of a Pulse and a Front. In Figure 8 we take for initial data (dashed curves) a

pulse moving to the right and a front moving to the left. Figure 8A shows profiles, v(x,t)

versus x , and Figure 8B shows profiles w{x,t) versus x , for discrete t: tp= 5p,

i e

0 <p <7 . when the two leading edges reach each other the dynamics are very similar to

the collision of two fronts. This brings the region near the fronts to the excited
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state (c3 <t < td)‘ When the trailing edge of the pulse enters this excited region it

increases in velocity and evolves into a back moving to the right (t_ < t < t7)- The

5
reason that the trailing edge increases in velocity is that the value of w at the excited
state is greater than the value of w at the trailing edge of a pulse. The singular
perturbation construction showed that the velocity of the trailling edge of the pulse iz an

increasing function of the value of w at which the trailing edge takes place.

Reflections of a Traveling Wave. Suppose that (a(x,t), B(x,t)) 1is the solution of System

(1.1) with initial data (n1(x), nz(x)). We define (n1(x), nz(x)) to be a local
disturbance if 1lim {sup (|a(x,t)| + |B(x,t))) = 0. This is a local disturbance with
t+o  x€R

respect to the steady state (v,w) = (0,0); one may also define analogously a local
disturbance with respect to (Ev'Ew)' We say (v(x,t), wix,t)) is a reflection of the
traveling wave solution (v(x,t), w(x,t)), a reflection caused by a local disturbance, if

(i) For some time T > 0 and some local disturbance (n1(x), n2(x)),

(Vix,t),wix,t)) is the solution of systems (1.1) with initial data
(v{x,T) + n1(x), w(x,T) + n (%)), and
(ii) There exists a traveling wave solution (v,(x,t), wy(x,t) moving in the
opposite direction of (v,w) such that
1im {sup(|v(x,t) = v1(x,t)| + |wix,t) - w1(x,t)|)} =0 .
t+o x€R

We say that it is possible to reflect the traveling wave (v,w) if there exists a
reflection of (v,w).

Our numerical experiments indicate that for given values of the parameters
a, €, and y it may be possible to reflect some traveling waves but not others. Figure 9
shows a front being reflected into a back with profiles v(x,t) versus x (Figure 9A) and
profiles w(x,t) versus x (Figure 9B) for discrete ¢t: tp = 2.5p, 0 <p < 17, The
first three profiles show a front moving to the right. At ¢t = tq (dashed curves) we
increased the values of w over a short interval just ahead of the leading edge. This
certainly represents a local disturbance. In fact one sees that in the disturbed region

the solution slowly returns to regst. As the leading edge enters the region of increased

w it slows down (t5 <t < t,;) and then collapses to become a back moving towards the
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left (t10 <t < tyy). Notice that the back travels with a speed greater than the front, as

indeed it should for parameter values from region (III) of Figure 6. This is also
consistent with the singular perturbation prediction which we note gives reasonably
accurate estimates for the back and front speed if ¢ is small.

It may be surprising to discover that under the corresponding circumstances a back
will not reflect to become a front. This is shown in Figure 10 with Figure 10A showing
profiles v{(x,t) versus x and Figure 10B showing profiles w(x,t) versus x for
discrete ¢t: tp = 2.5p, 0 < p €< 14. The first two profiles show a back moving towards the
right. At t = t, (dashed lines) we sharply decreased w over an interval directly
ahead of the trailing edge of the back. This is certainly a local disturbance (with
respect to (Ev, E,)). In fact, one sees that in the disturbed region the solution slowly
returns to the excited state. Upon entering the disturbed region the trailing edge slows
down and then apparently stops, waiting for the disturbance ahead of it to return to the
excited state (t4 <t < t9). The back then continues to move in its original direction
(tg < t < ty5).

Our numerical experiments suggest that if the parameters a, ¢, and Yy lie in a
certain subset of values for which the back speed exceeds the front speed then it is
possible to reflect a front but impossible to reflect a back by local disturbances. To
understand this behavior we formulate and study an idealized model problem. We consider
first the case of a back moving rightward toward a local disturbance of decreased w
(Figqure 10). As one recalls from the singular perturbation construction, the back speed is
determined by the value of w directly ahead of it and, moreover, this speed decreases
with decreasing w . Hence one expects intuitively that if w falls abruptly in the
disturbed region then the back will decelerate suddenly and virtually halt. An appropriate
formal perturbation calculation for this transient stage, which includes the deceleration,
temporary halt, and initiation of either reflected or continued propagation, is yet to be
worked out. Our approach is to observe from the numerical results during this transient
state, T <t < T say, that v and w at the "halting location" Xq have values close

1

to Ev and Ew . Thus we consider the model problem in which v,w satisfy the equations
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Ve ™ Vex £(v) w

(4.1a)

v, = e(v - yw) for x < Xq v t e (T,T1)
with the boundary conditions:
(4.1b) (vixg,t), wixg,t)) = (E,, E
(4.1¢) (v,w) + (0,0) as X + -
and with the approaching back profile as initial conditions.

We remark that one can also motivate the boundary condition (4.1b) as follows.

Let U denote the disturbed region in Figure 10. Shortly after the disturbance occurs,
v > EV , w< Ew in 0 and so v diffuses outward across 30 . Hence, just outside D,
wy > 0 and one observes a local increase in w there. The local spread of v also means
that wt ig less positive just inside 30 than it is toward the middle of D. This
explains the under/overshoots in the w-profile (Figure 10B) that one sees in crossing 237
outward. From this it also follows that between the under and overshoot, w w Ew
(at x =~ Xy0 as in the preceding paragraph), at least for a while. Finally, if the back
approaches soon then v > Ev just inside and v < Ev just to the left of 37 so that
v . Ev near X, . The above argument does not apply if the local disturbance is not
fairly sharp. But of course, one can probably not induce reflections by disturbances which
are not sharp. At the same time, the singular perturbation treatment would not predict
halting if the local disturbance were slowly varying in x ; ir such a case, the wave could
decelerate sufficiently without stopping as the disturbance wears off.

One expects that the temporary halt of a back may be viewed as the approach of the
solution of (4.1) to a time~independent steady state solution. The steady state solution
(q{x), p{(x)) must satisfy .

q" + f(q) ~p=0
q-vyy=0

with boundary conditions

{qlxg),p(xg)) = (E, E ) and (q(~=),p(-=)) = (0,0).
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Since p(x) = q(x)/y in (-=,x ) we seek a function q(x) which satisfies the boundary

0

value problem:

q" + f(q) —q/Yy=0 in (-ﬂ,xo)
(4.2)
q{-=) =0 ; Q(xo) = Ev .
For vy @ lyo,y1) problem {4.2) has a unique solution. This can be seen by considering the
phase plane portrait for the equation q" + f(q) - q/y = 0 as shown in Figure 11,
Finally, the steady state will be approached only if it is stable as a solution to the

System (4.1). In Theorem 4.1 we demonstrate (see Appendix C) the stability or instability

of (q,p).

Theorem 4.1.

Sﬁppose Yo <y < Yy o oOF equivalently 1 < Za/Ev < 2. 1If eyz > 1, then (q(x),
p(x)) is linearly stable as a solution to (4.1). For eyz <1, (q{x), p(x)) |is
linearly stable when
{4.3) 2a/Ev > 1.278...
but unstable, for given ¢,y, Iif
(4.4) g < 2a/Ev -1 1.

We conjecture that when the back is faster than the front and (q(x), p(x)) is stable
then the back cannot be reflected by local disturbances.

A few comments on Theorem 4.1 are in order. The sufficient condition (4.4) which
guarantees instabilitv is an asymptotic condition. Precise conditions are those for which
inequality (C.11) of Appendix C is satisfied. As the proof demonstrates, the loss or gain
of stability as parameters are varied leads to Hopf bifurcation of periodic solutions.

This applies to more general and related problems for bistable systems which we will pursue
in further work. Finally, note that the statement in Theorem 4.1 for 272 > 1 holds for
any "cubic-like" f(v) ; see Appendix C .

Our computed examples are for parameter values which satisfy inequality (4.3). Hence,

corresponding to our model problem (4.1), we identify the halted back in Figure 10 with the

steady state solution (q,p) of (4.1). The back waits at this steady state for the local
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disturbance to decay sufficiently. When this has happened the back can proceed through the
disturbed region. For parameter values such that the steady state (q(x),p{x)) exists but
is unstable we would not predict that it is impossible to reflect the back.

For the analogous problem (Figure 9), the front does reflect, rather than stop and
wait for the local disturbance to decay, because the corresponding steady state solution
does not exist. To be more precise, the model problem, in this case, is the system of
Equations (4.%a) with the boundary conditions
(4.5a) (vixgrt), wixg,t)) = (0,0) ,

(4.5b) (v,w) =+ (Ev'Ew) as x + ~o
rather than (4.1b,c). We would seek a steady state q(x), with p(x) = gq{(x)/y , as a
solution to the boundary value problem

q"+ flq) - q/y =0
(4.6)

q(-®) = Ev B q(xo) =0 .
From the phase plane portrait (Figure 11), we see that this problem does not have a
solution.

let us examine further the transient phase of the reflection in Figure 9. Observe
that the leading edge is stopped by the local disturbance at t = t, and does not move
for tg <t < ty5. It cannot move to the right because of the local disturbance in w .
It also cannot move to the left. If it did it would resemble the trailing edge of a back
moving to the left. Since the value of w immediately to the left of this trailing edge
is very close to zero this would be impossible. The leading edge of the front must
therefore wait at x = X9 for either the values of w directly ahead of it to decrease
sufficiently so that it can move to the right, or for the values of w directly behind it
to increase sufficiently so that it can move to the left. 1In Figure 9B we see that the
value of w sgteadily increases behind the leading edge for tg < t < tg. When these
valueg of w are large enough the leading edge collapses to form a back moving to the
left. Hence, for a front to reflect the local disturbance must be sufficiently large so

that the leading edge is stopped long enough for the values of w behind it to increase
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sufficiently. Note that the values of w behind the leading edge would be unable to
increase sufficiently if there existed a steady solution of (4.5).

The analysis we have presented so far holds for y € (70,71). Only for these values
of Yy does the back speed exceed the front speed. On the other hand, the front is faster
than the back if vy e (11,72). In this case there exists a solution of the boundary value
problem (4.6) but there does not exist a solution of Equation (4.2). Hence we conjecture
that, for a subset of parameter values for which the front speed exceeds the back speed, it
is always possible to reflect a back but not a front.

These results indicate that for vy < Yqr the rest state in some sense dominates the
excited state. For vy < Y, the only type of stable traveling wave which brings the system
to the excited state is a front which can be reflected by means of a local disturbance. For
a subset of this range of parameters, when (q(x), p(x)) is stable, the back and pulse
cannot be reflected. Hence, if the system is being switched, as t + » , towards the
excited state then it is possible, by means of a local disturbance, to return the system to
rest. However, if the system is switching towards the rest state then it is impossible, by
means of a local disturbance, to bring the system to the excited state. For vy > Y’ the
corresponding opposite statement is true and the excited state is dominant.

As mentioned in the introduction, our congideration of reflections by local dis-
turbances also leads to expectations about the outcome of a front or back which approaches
a boundary where v,w are held fixed at either (0,0) or (Ev, Ew). This is because our
model problems (4.1a,b,c) and (4.1a, 4.5a,b) incorporate Dirichlet boundary conditions
explicitly. Suppose parameters are such that the back speed exceeds the front speed.

Then, because (4.6} has no solution, we would expect a front to be reflected from a
boundary where (v,w) = (0,0). Next consider a back approaching a boundary where

(v,w) = (Ev' Ew)’ If the steady state solution (q(x), p(x)) to (4.1) is stable, then we
expect the back will tend to (q(x), p(x)) and not be reflected. On the other hand, if
(q(x), p(x)) 4is unstable (€Y2 < 1 and inequality (4.11), cf. Theorem 4.1) then we expect
that the back might be reflected. Indeed, we have obtained numerical solutions of the

model problems, for parameter values in this latter regime, which illustrate that
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reflection may take place for a back approaching an excited boundary as well as for a front

approaching a resting boundary.

-
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Appendix A - Proof of Theorem 3.1.

Throughout this discussion we assume that the parameters e and vy are fixed and set

h(s,c) = Fla,e,C,Y). We determine for which values of ¢ there exists a root, s , of the

equation
h(s,c) = 0
such that s € (0,1).
Note that,
(a.1) 1,0 = 2 (1,00 = 0
for all values of ¢ . Furthermore, for any fixed value of ¢ there can exist at most one
root of the equation 33% (s.,c) =0 for s' >0 . If a root exists then it is given by
38

* -(ag*a, )(rreay) 2 | o, /Cay-ay)
= (ay+a,) (yca,) ;; *

In the case a, = 33 we must choose a branch of the logarithm to determine s' . This,
alorg #ith (A.1), implies that for a given value of ¢ at most one pulse can exist for a
uniquely determined value of s and, therefore, from (3.8), for a uniquely determined
value of a . Furthermore,

Lemma A.1. Assume that the parameters ¢,Y, and c are fixed. Then a necesgary and

sufficient condition for pulses to exist is that either

2
(a) h{0,c) > 0 and 2—5 h(1,¢c) < 0

%

(A.2) or
a2
{b) h(0,c) < 0 and -3 hi{1,¢e¢) > 0.

3s

In Lemmas A.3 and A.4 we determine for which values of ¢ the functions h(0,c) and

2
2—5 h(1,c) are ejther positive or negative. We first prove some properties of oy the
98
positive root of the characteristic polynomial p(x) defined in (3.4). Recall that
2 14
g E—Y.
Y

Lemma A.2. Assume that the parameters ¢ and y are fixed. Then

(a) lim aj = o
ci
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{b) 1 - & 1
dc c=0 2
2¢ey
(c) a > ¢ for all ¢ >0 |
(d) if eyz > 1 then a, > o for all ¢ > 0

if eyz <1 then, a <o for 0 Cc<g= ey

(e) 1 r—y(”ﬂ)

-

= g for c=g¢g

-
>o¢ for ¢ > 0.

Proof. Parts (a) and (b) follow from substituting an expansion of ay in powers of ¢
eYte
into the characteristic polynomial (3.4). For (¢) note that plc) = -c - p <0 .

Since p(x) >0 for x> a, the result follows.

We prove (d) by showing that p(o) < 0 for all ¢ > 0 . Now, pl(g) =
- 2
g = lmey If eyz > 1 then

YY(1+€Y)
p(o) is never equal to zero for any positive value of ¢ . Therefore, either p(g) < 0

1
o/z(az-cu-(ﬂsy))- Hence, pl(o) =0 if ¢ =

or plag) >0 for all ¢ > 0 . It follows that either a, > g or a, < o for all c > 0.

But, by part {(¢) Q, >c for all c . Choosing c > o the result follows.
To prove (e) assume that eyz < 1. Hence o> 0 . By inspection,

a

p(o) <0 for c > o . Hence, ¢ < a, because p(x) > 0 for any x > oy . Similarly,

1

-
}
¥

‘.
i
!
!

i We now study the function h(0,c) which can be written explicitly as:
¥ Py
i (A.3) h(o,e) =2 - —— .

o 6§

plag) >0 for ¢ < ¢ 80, in this case, o> a, - //

1

' First note that the condition h(0,c) > 0 is equivalent to
2
(A.4) He) = (c - eval + (37?—‘ ) 2ca, + (e +ev) <0 .

. (A.4) is obtained by substituting into (A.3) the explicit formulas for p; y az, and 61

¥ & and then using the fact that p( a1) =0 .
Lemma A.3: Assume that the parameters & and y are fixed.

(a) There exists a positive constant 31 such that if eyz <1 and c € (0,51) then

h(0,c) > 0 .
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(b) There exists a positive constant Ez such that if eyz <1 and c > Ez then oo

h{(0,c) <0 .
(e) If eyz > 1 then h{(0,c) <0 for all ¢ > 0 .
Proof: ) .
€ 2—1
From Lemma A.2(a) and (b) it follows that H(0) = 0 and H'(0) = a1( —Y7— ]< 0.

Part (a) now follows immediately. (b) is true because a1 ~¢ for ¢ > 1 8o that H
3

1lim H(c) = +o , We prove (c) by showing that H(c) > 0 for all ¢ > 0 . From

c+o

p(u1) = 0 , we replace the first and third terms of H(c) by ¢ a? - c(ey+1)a1. Now
H(c) may be written as

2
H(e) = cu‘(az S ).

1 Y
# Hence, from Lemma A.2(d), Hlec) > 0 . //
. 32 a2 | M
We now study ) h(1,c) which can be written explicitly as - h(1,c) = - 2.
] 32 3s a, 6‘
lemma A.4. A necessary and sufficient condition for — h(1,c) < 0 is that
]
1 1 /
(A.5) (ey+e) ! < cf ey+c) ) + (c2+CY)2 + <:2 + €Y
2
Proof: If we substitute the explicit expressions for p:' and tS1 into that of % h(1,c)
2 %8
and use the fact that p(a,) = 0 we find that 3—2 h(1,c) < 0 1is equivalent to
s

X 1
(E+52)/2<0

EY+ ¢

(A.6) 1

which is equivalent to

1
p[ (L€ ) /2] <0 .
ey + ¢© 4
This can be written as

(A7) P -2cT -~ (ept) <0

where

r- (e %,
2
EY + ¢
Finally, (A.7) is equivalent to

1
(51—+—e-2]/2-r<c+lc2+ey+1 .

1 ey + ¢
' or,

1 1
:! {ey + €) 72 <Celey + ) 2 +f(c2+ey)2+c2+e~(. 7

-46-




v b

Lemma A.5: Assume that tge parameters ¢ and y are fixed.

(a) If eyz > 1 then 3—5 h(1,c) < 0 for all ¢ > 0 .
2 98

(b) If gy < t then there exists a positive constant c

'min such that

} . 32
; —= h(t,¢c) >0 for ¢ € (0,c

2 min) and
a8

a2
;:5 h(1,c) < 0 for c > cmin .

Proof. (a) Note that (A.S) is true for eyz >1 at ¢ =0 . The result follows because
the right hand side of (A.5) is an increasing function of ¢ .

(b) This is true because (A.5) fails to be true for cyz <1 at c =0 , and the right
hand -side of (A.5) is a monotonically increasing function which tends to +» as ¢ + =, //
k With these preliminary lemmas the proof of Theorem 3.1 now follows easily. From

2

Lemmas A.1, A.3(c), and A.5(a) we conclude that a pulse cannot exist if ¢y > 1. From

Lemmas A.1, A,3(a), and A.5(b) it follows that a pulse cannot exist if eyz < 1 and

c < min(E,, c

min). Similarily a pulse cannot exist for c > nax(Ez,c

}o We assume that
min

eyz < 1, unless stated otherwise, throughout the rest of Appendix A . We claim thi,*

pulses exist for values of c close to, but greater than Cmin * From Lemma A.S5(b) we

2
have that 2—5 h{t,c) <0 for c¢ > Cmin * Our claim follows from Lemma A.1 if we can show

that h(0,c ) >0 . But, from (A.6) we have that

min
N 1
agle, )= (—L2E )72 (g,
€Y + Cnin
22 P 2 2
Furthermore, —: h(1,c ) =0, and therefore ( - ) = 2a, € 20 . Since
2 min [ ] 1
8 1 min
N [
Py
h(o'cmin) = 2 - the result follows.
o é

1

We next show that 1lim a = lim z_ = 0 . From (3.8) it suffices to show that at

1
cml’nin c"cmin

€= Cpypr 8= 1. From A.1! and Lemma A.5(b), it follows that

N
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2

) 3
h(1,cm1n) v h(1,cmin) = ;:5 h(1,cmin) = 0 . Therefore, his,cp,,)

at s = 1 and the result follows.

has a triple root

SEE RO NN

We now wish to define Cp, . Recall that h(o,c

ax ) > 0 and, from Lemma A.3(b),

min

h(0,c) ¢ 0 for c¢ > c., . Let Crax inf{c > Cnin’ h(0,c) = 0}. Our previous discussion

2 in
b
‘ shows that pul:?a exist for c € (cmin, cmax)' Note that the condition h(O,cmax) = 0
implies that 3% = 202 at Cnax ° Furthermore, from (3.8), it follows that at ¢ = Cmax’
L]
Py
0 =g =1-3a3— or,
[
1
61 1 Y
L R e T P
1 20
{ ‘3’21
That is, 1lim a - « Since 8 = e we also conclude that 1lim 2z = =,
2(1+Y) 1
ctc ctc
max max
It remains to prove that as cyz + 1 both Smin and cpay v 0 ¢ pacall that

h(o'cmax) = 0 . Therefore, H(c,,. ) =20 where H(c) has been defined in formula (A.4).
Moreover, at eyz =1, H(0) =H'(0) =0 and, for eyz > 1, the proof of Lemma A.3(c)
shows that H(c) > 0 for all ¢ > 0 . Hence, Cmax = 0 must be a double root of the

equation H(c) = 0 at eyz = {1 and the result follows.

v Sy
B
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Appendix B - Proof of Theorem 3.2.

Assume that the parameters € and Y are fixed. Recall that a necessary and

sufficient condition for a front to exist is that the speed, c , satisfies the inequality

L]
Py 2
1

pl
From the proof of Lemma A.3(a), we conclude that 1lim h(0,c) = 1lim o - = 0 ., That
c+0 c40 o 61
pl
is, 1lim b = 202 > 02 . Therefore, a front exigts for c¢ sufficiently small.
c¥ 1

pl
Furthermore, if ¢ is sufficiently large, then 31 > 202 > 02 and a front exists. This
1

is an immediate consequence of Lemma A.3(b) and (c).

We next show that 1lim a = —15 = 57%:—7 . In the preceding paragraph we saw that
c40 20 Y
L]
lim L 202 +« The result now follows from Equation (3.10).

cd40 1
It remains to prove that

>0 if eYZ <1

Ja

2
ac|c=0 0 1f ey =1

(B.1)
<0 if eyz > 1 .

It will be easier to consider ¢ as a function of vy . Note, for PWL, that at ¢ =0 ,

2a

Y=Y, " 120 which implies that ay/3a|c=° >0 . Hence, (B.1) is equivalent to
>0 if syf <1

(B.2) XA =0 if eyf = 1

2

<0 if ey, > 1.

The result (B.2) can be verified algebraically for PWL. In the following proof we

require only that f is “cubic-like"™ as shown in Figure 4. For PWL and CUB, Y, is

defined in Section 2. More generally, when f may not have the symmetry properties of PWL

or CUB, then 71 is the value of y such that
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g,

g

Ey
0= [ [£v) - v/y,lav.
0

In this more general case, one should remember that an/aclc_o and By/aclc_o will have

opposite sign if ay/aalc_o <0 .

We first write v, vc, wc and f(vc) as power series in ¢
(c) = + oY, 4 Iy 4 eee
Y Yy Y4 Yy

v (z) = 2 (2) + cop (2) + eee
(B.3) c 0 1

wc(z) = wo(z) + c¢1(z) + eee
f(vc) = f(wo) + cw,ﬁ'(vo) + eee .,

Recall that (vc,wc) solves
cv'! = yv" + f(v ) - w
c c c c

(B.4)

L] -
ow. = e(vc ch)

with boundary conditions

(Vc("')l wc(’”)) = (0,0)

(vc(+n), wc(+w)) = (EV,EW) .
Substituting (B.3) into (B.4) and equating like order terms we find to the zeroth order
that:

0= Wa + f(¢0) - Wo

0= e(vo - Y100)

(#ol==), g (==)) = (0,0) and (9 (+=),§ (+=)) = (EV,EW).

Hence, wo(z) = wo(x)/y1 « Therefore, ¢°(z) is a solution of the ordinary differential

equation
1
= " - —
0 wo + f(wo) 1, wo

-50=
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with boundary conditions

Pol==r =0, Vit = Ev .
It is not hard to show that such a solution exists and is a monotonically increasing
function.

We now equate “irst order terms to obtain

[——y ] ] -
IR A U

0 1

(B.5)
Yo = B0 m (Ya¥y + YY)

This implies that

—- L]
1 Y, €Y,

and, hence, \01 is a solution of the equation

(B.6 PRI (TP DL
-6) A )% T 3§ 0 2 2 %
1 &Yy Yy ,
i
!
Since ¢6 is a solution of the homogeneous equation: .
¥ {
1 w' N

" vy ] - _0=
! (050" + (0)" £1lsg) = == 0
'1

a necessary and sufficient condition for (B.6) to have a solution, <P.| , is that

A (‘pl |(1 - 1 ) - h Yy =0
h: {B.7) o * %o 2 2 %o :
€Y, Y, '
E Here (u,v) = [T u v dx. Now (o + 9 = 2—"— . Therefore, (B.7) becomes ;
lw i
3
- L vty o iU Ez =
“ 7 9g9q b2 v e
5Y1 71
.
or
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Y, =2 IR oy %)
Y1 v

from which the result follows.

We note that the same proof applies for the emergence of the slow back solution from
c = 0 except, in that case, ?1 takes the opposite sign because <¢6 B po) = —63/2 .

To treat stability we introduce a traveling coordinate frame (z,t), z = x + ct , and
seek exponential solutions (eXt viz), eth(z)) to the linear variational equation.
Hence, A, V, W, satisfy

AV = V" - cV' + f'(vc(z))V -w
(B.8)

W = —cW' + (V- wW) .
As in the proof above, we follow a perturbation argqument for small c and write
vi(z) = Vo(z) + c V1(2) + ees

wiz) = wo(z) + ¢ W1(Z) + e

A= XO + c X' + eve .

. To lowest order we find for y = y, + O(c) that W, = —f v , and
, 1 0 x0+:v1 0

i
* " ) - +
! (B.9) Vo * luy + £ (wo(z))] vy =0, z € R
1 where
(B.10)

; By = =Xy -e/(x0+ey1) .

The perturbation procedure is straightforward: X1 is obtained from the solvability

v condition for the next order equation, etc. Therefore we concentrate on (B.9), a
Schroedinger eigenvalue problem. If (B.9) has a bounded solution with Re Ao >0 then
(vc,wc) is unstable for 0 < ¢ << 1. On the other hand, if (B.9) has no bounded solution
with Re Ao > 0 then (Vé,wc) is linearly stable for 0 < c << 1. We remark that
eigenvalue problems of the form (B.9), (B.10) were also encountered in [16].

Equation (B.9) always has the solution X =0, i.e., u

0 ='1/Y1 , and V0=¢6 .

0

This corresponds to the translation invariance of ¥9(z) and does not determine
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stability. Because of the quadratic relation between uo and xo , a second solution to

2
B - = L] . - .
1/y1 ¢ Vg Y0 is xo €Y, + 1/71 If €Y < 1 then this second

solution satisfies Ao > 0 so that vc(z), wc(z) is unstable. On the other hand, suppose

(B.9) with g
eyz > 1. Then the second solution satisfies AO < 0 and does not lead to an unstable
mode. Moreover, since the eigenfunction vé is of one sign it corresponds to the lowest

value of Yy in the discrete spectrum of (B.9). Therefore, any other must be greater

Yo
than ‘1/Y1 and, from (B.10), the corresponding values of XO satisfy Re xo < 0 . Hence,

if eYz > 1 we have linear stability for small c .
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Appendix C - Proof of Theorem 4.1.

Without loss of generality we take x; = 0 . If Yo <y« Yy i.e. 1<« ZA/Ev < 2,
then for PWL the steady state solution to (4.2) is
qi(x) = a eU(x-E) ’ x € E

(C.1)

o(x-£) -g(x=-£)

=E +(a-E/2)e - (E /2)e E<x €0

where

(C.2) e-;—o 2n (2a/Ev-1)

and, as in Section 3, 02 = 1 + 1/y. PFor stability, we consider exponential solutions
ext Vix) extw(x) to the linear variational equation. As in Appendix B, W satisfies

Wix) = € V(x)/{\ + g¢y) and 1, V(x) solve the Schroedinger eigenvalue problem:

{(€.3) Ve o+ [+ £7(q(x)IV = 0 -» <x <0
where
(C.4) = u(d) = -2~ &/(2+ gy)
and
(C.5) Vio) =0, [IVix)Ix 0 as x ¥ - .
For PWL, i
(C.6) £'(q(x)) = -1 + S(E)/q*(E) I

Here &(E) 1is the Dirac delta function.

If (C.3) - (C.6) has a solution with Re )\ > 0 , then we say that q(x) 1is
unstable. On the other hand, if there is no solution with Re A > 0 then gq(x) |is
linearly stable. Indeed, it is possible that there may be no values of 1A for which
(C.3)-(C.6) has a solution; i.e., there may be no eigenvlave in the discrete spectrum for
which V(0) = 0 . In such a case we would conclude that q{(x) is linearly stable. We

note in passing that there is always a solution Hyr Vo(x) which satisfies (C.3) and for

which V&(O) = 0 ; the lowest such value for Vg congtitutes the "ground state”. For the
solutions we seek, the relation (C.4) implies that the largest Re )\ corresponds to the i

algebraically smallest u ; for this smallest 1 , Vv 1is of one sign for x ¢ 0 .
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First we show, for "cubic-like” £ , that q(x) 4is linearly stable if eyz > 1 . If

there is an eigensolution, it satisfies (C.3) rewritten as

V" + [(p+ 1/y + £'(qi{x)) -~ V/yl]v =0 .
Now multiply this equation by q'(x) and (4.2) by V'{(x), add the two equations, and then

integrate from x = -» to x = 0 to obtain:

g (0) = [° L (=ve(a) + vasviax - (u+ v [0 gt v oax .
-

Since V(0) = 0 and f£(E,) =E /y we arrive at

p+ /v = a0 0)/ f°q' vax.

But q'(x)/q'(0) > 0 and V(x)N'(0) <0 for x < 0 . Therefore y > -1/y, and from

(C.4) we conclude that Re ) < 0 when cyz > 1.

Next we consider eyz < 1 and restrict attention to PWL. If we normalize V so that

V(E) = 1, then

Vix) = eu(x—g) ’ x € &
(c.?7)
= ginh ax/sinh af , £E<x <0 l
{
where
a= /i-y .

Since V must satisfy the jump condition

+
vt = - vaize e
£

we find that y solves the "characteristic equation”

(C.8) G(p,a,€,Y) = 0

where

(C.9) G(u,a,g,Y) =1 - coth af - 1/(aao0).
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Equation (C.8) can be analyzed graphically. For all values of the parameters

a, €,Y, we have that G > 0 for 4 << 0 . Next, we find parameter ranges such that G >
0 for 0 ¢ 1 -y < 1 . In such cases we conclude that G is of one sign for u < 1 .
(If not, then G would have two zerces for u < 1 . This would imply that (C.3)=-(C.6)
has two different eigenvalues u , each with V(x) non-zero for x < 0 , which
contradicts the known spectral properties of Schroedinger problems.) From this it foilows
that there is no solution to (C.3)=(C.6) of the assumed form so that q(x) 1is linear.y
stable for such parameter ranges.
To find the parameter range, suppose u is slightly less than one. Then G > 0 is
equivalent to - < ag or , using (C.2),
(C.10) ~tn(2a/E - 1) < 2a/E .
Hence, if eyz < 1 and
2@/5v > 1.278.. ’
the inequality (C.10) is satisfied, there is no eigensolution of the desired form, and
therefore, q(x) is linearly stable.
To see when q(x) is unstable, observe from (C.4) that u < -ey implies that at
least one of the two corresponding )\ values has Re A > 0 . Hence, if G < 0 for
u= =€y, then G has a zero for u < -egy and g(x) {is unstable. For fixed
€,Y and py = =gy , we write G < 0 as
{c.11) 1 - coth[/T + ey &n (2a/E - 1)/24] < 20/[/1 + ey 2a/E ).
If 0 < 2a/E - 1¢< 1, (C.11) becomes 1 ¢ o/¥1 + ey which is satisfied when €% < 1
so that q{x) 1s unstable. Finally, observe that at critical values of the parameters
a,e,y for which G(-¢y,a,g,y) = 0 , the corresponding ) values are a complex pair with
Re A=0, ImA=24i Je(t - eyz) so that a branch of periodic solutions emerges through

Hopf bifurcation.
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